• # Honors Math 7 - Credit By Exam

This exam is for students who have completed honors 6th-grade math and wish to accelerate into Honors Algebra I for the following school year. This would accelerate students past the Honors Math 7 course. In Plano ISD the Honors Math 7 course encompasses approximately half of the 7th-grade math state standards as well as all of the 8th-grade state standards. Below are the learning outcomes from these state standards that students will be expected to demonstrate on this CBE.

Credit By Exam:    1.0 -  *Grade is not calculated in the Grade Point Average (GPA)

PISD Course Earned:  Honors Math 7

Exam:  District Created

Exam Time Limit:  4 Hours

Exam Format:

• 96 Multiple Choice Questions

Exam Supplemental Materials:

Exam Content Information - State standards (TEKS) for Honors Math 7:

• Students may prepare by reviewing any resources aligned to these grade 7 and grade 8 Math TEKS listed below.

Numbers and Operations

(7.2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of rational numbers.

(8.2)  Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:
(A) extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of real numbers;
(B) approximate the value of an irrational number, including π and square roots of numbers less than 225, and locate that rational number approximation on a number line;
(D) order a set of real numbers arising from mathematical and real‐world contexts.

(8.6)  Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to:
(C) use models and diagrams to explain the Pythagorean theorem.

(8.7)  Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to:
(C) use the Pythagorean Theorem and its converse to solve problems; and
(D) determine the distance between two points on a coordinate plane using the Pythagorean Theorem.

Geometry

(7.5) Proportionality. The students applies mathematical process standards to use geometry to describe or solve problems involving proportional relationships. The student is expected to:
(A) generalize the critical attributes of similarity, including ratios within and between similar shapes;
(B) describe πas the ratio of the circumference of a circle to its diameter; and
(C) solve mathematical and real-world problems involving similar shapes and scale drawings.

(8.10) Two‐dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to:
(A) generalize the properties of orientation and congruence of rotations, reflections, translations, and dilations of two‐dimensional shapes on a coordinate plane;
(B) differentiate between transformations that preserve congruence and those that do not;
(C) explain the effect of translations, reflections over the x‐ or y‐axis, and rotations limited to 90°, 180°, 270°, and 360° as applied to two‐dimensional shapes on a coordinate plane using an algebraic representation;
(D) model the effect on linear and area measurements of dilated two‐dimensional shapes.

(8.3)  Proportionality. The student applies mathematical process standards to use proportional relationships to describe dilations. The student is expected to:
(A) generalize that the ratio of corresponding sides of similar shapes are proportional, including a shape and its dilation;
(B) compare and contrast the attributes of a shape and its dilation(s) on a coordinate plane; and
(C) use an algebraic representation to explain the effect of a given positive rational scale factor applied to two‐dimensional figures on a coordinate plane with the origin as the center of dilation.

(8.8)  Expressions, equations, and relationships. The student applies mathematical process standards to use one‐variable equations or inequalities in problem situations. The student is expected to:
(D) use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle‐angle criterion for similarity of triangles.

Proportionality and Linear Relationships

(7.4)  Proportionality. The student applies mathematical process standards to represent and solve problems involving proportional relationships. The student is  expected to:
(C) determine the constant of proportionality (k = y/x) within mathematical and real‐world problems;

(7.7) Expressions, equations, and relationships. The student applies mathematical process standards to represent linear relationships using multiple representations. The student is expected to represent linear relationships using verbal descriptions, tables, and equations that simplify to the form y=mx+b.

(8.5)  Proportionality. The student applies mathematical process standards to use proportional and non‐proportional relationships to develop foundational concepts of functions. The student is expected to:
(A) represent linear proportional situations with tables, graphs, and equations in the form of y = kx;
(B) represent linear non‐proportional situations with tables, graphs, and equations in the form of y = mx + b, where b ≠ 0;
(E) solve problems involving direct variation;
(F) distinguish between proportional and non‐proportional situations using tables, graphs, and equations in the form y = kx or y = mx + b, where b ≠ 0;
(G) identify functions using sets of ordered pairs, tables, mappings, and graphs;
(H) identify examples of proportional and non‐proportional functions that arise from mathematical and real‐world problems; and
(I) write an equation in the form y = mx + b to model a linear relationship between two quantities using verbal, numerical, tabular, and graphical representations.

(8.8)  Expressions, equations, and relationships. The student applies mathematical process standards to use one‐variable equations or inequalities in problem situations. The student is expected to:
(A) write one‐variable equations or inequalities with variables on both sides that represent problems using rational number coefficients and constants;
(B) write a corresponding real‐world problem when given a one‐variable equation or inequality with variables on both sides of the equal sign using rational number coefficients and constants;
(C)  model and solve one‐variable equations with variables on both sides of the equal sign that represent mathematical and real‐world problems using rational number coefficients and constants;

Probability

(7.6)  Proportionality. The student applies mathematical process standards to use probability and statistics to describe or solve problems involving proportional relationships. The student is expected to:
(A) represent sample spaces for simple and compound events using lists and tree diagrams;
(B) select and use different simulations to represent simple and compound events with and without technology;
(C) make predictions and determine solutions using experimental data for simple and compound events;
(D) make predictions and determine solutions using theoretical probability for simple and compound events;
(E) find the probabilities of a simple event and its complement and describe the relationship between the two;
(H) solve problems using qualitative and quantitative predictions and comparisons from simple experiments; and
(I) determine experimental and theoretical probabilities related to simple and compound events using data and sample spaces.

Expressions, Equations, and Relationships

(8.4)  Proportionality. The student applies mathematical process standards to explain proportional and non‐proportional relationships involving slope. The student is expected to:
(A) use similar right triangles to develop an understanding that slope, m, given as the rate comparing the change in y‐values to the change in x‐values, (y2 ‐ y1)/ (x2 ‐ x1), is the same for any two points (x1, y1) and (x2, y2) on the same line;
(B) graph proportional relationships, interpreting the unit rate as the slope of the line that models the relationship; and
(C) use data from a table or graph to determine the rate of change or slope and y‐intercept in mathematical and real‐world problems.

(8.9)  Expressions, equations, and relationships. The student applies mathematical process standards to use multiple representations to develop foundational concepts of simultaneouslinear equations. The student is expected to
(A) identify and verify the values of x and y that simultaneously satisfy two linear equations in the form y = mx + b from the intersections of the graphed equations.

3-Dimensional Measurement

(7.8)  Expressions, equations, and relationships. The student applies mathematical process standards to develop geometric relationships with volume. The student is expected to:
(A) model the relationship between the volume of a rectangular prism and a rectangular pyramid having both congruent bases and heights and connect that relationship to the formulas;
(B) explain verbally and symbolically the relationship between the volume of a triangular prism and a triangular pyramid having both congruent bases and heights and connect that relationship to the formulas; and

(7.9)  Expressions, equations, and relationships. The student applies mathematical process standards to solve geometric problems. The student is expected to:
(A) solve problems involving the volume of rectangular prisms, triangular prisms, rectangular pyramids, and triangular pyramids;
(B) determine the circumference and area of circles;
(C) determine the area of composite figures containing combinations of rectangles, squares, parallelograms, trapezoids, triangles, semicircles, and quarter-circles
(D) solve problems involving the lateral and total surface area of a rectangular prism, rectangular pyramid, triangular prism, and triangular pyramid by determining the area of the shape's net.

(8.7)  Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to:
(A) solve problems involving the volume of cylinders, cones, and spheres;
(B) use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms,
triangular prisms, and cylinders;

(8.6)  Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to:
(A) describe the volume formula V = Bh of a cylinder in terms of its base area and its height;
(B) model the relationship between the volume of a cylinder and a cone having both congruent bases and heights and connect that relationship to the  formulas;

Data Analysis

(7.6)  Proportionality. The student applies mathematical process standards to use probability and statistics to describe or solve problems involving proportional relationships. The student is expected to:
(F) use data from a random sample to make inferences about a population;
(G) solve problems using data represented in bar graphs, dot plots, and circle graphs, including part‐to‐whole and part‐to‐part comparisons and equivalents;
(H) solve problems using qualitative and quantitative predictions and comparisons from simple experiments; and

(7.12)  Measurement and data. The student applies mathematical process standards to use statistical representations to analyze data. The student is expected  to:
(B) use data from a random sample to make inferences about a population; and
(C) compare two populations based on data in random samples from these populations, including informal comparative inferences about differences between the two populations.

(8.5)  Proportionality. The student applies mathematical process standards to use proportional and non‐proportional relationships to develop foundational concepts of functions. The student is expected to:
(C) contrast bivariate sets of data that suggest a linear relationship with bivariate sets of data that do not suggest a linear relationship from a graphical  representation;
(D) use a trend line that approximates the linear relationship between bivariate sets of data to make predictions;

(8.11)  Measurement and data. The student applies mathematical process standards to use statistical procedures to describe data. The student is expected to:
(A) construct a scatterplot and describe the observed data to address questions of association such as linear, non‐linear, and no association between bivariate data;
(B) determine the mean absolute deviation and use this quantity as a measure of the average distance data are from the mean using a dataset of no more  than 10 data points; and
(C) simulate generating random samples of the same size from a population with known characteristics to develop the notion of a random sample being representative of the population from which it was selected.

(8.2)  Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is  expected to:
(C) convert between standard decimal notation and scientific notation;

Personal Financial Literacy

(7.13)  Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:
(B) identify the components of a personal budget, including income, planned savings for college, retirement, and emergencies, taxes, and fixed and variable expenses, and calculate what percentage each category comprises of the total budget;
(C) create and organize a financial assets and liabilities record and construct a net worth statement;
(D) use a family budget estimator to determine the minimum household budget and average hourly wage needed for a family to meet its basic needs in the student's city or another large city nearby;
(E) calculate and compare simple interest and compound interest earnings; and

(8.12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's like as a knowledgeable consumer and investor. The student is expected to:
(A) solve real-world problems comparing how interest rate and loan length affect the cost of credit;
(B) calculate the total cost of repaying a loan, including credit cards and easy access loans, under various rates of interest and over different periods using an online calculator;
(C) explain how small amounts of money invested regularly, including money saved for college and retirement, grow over time;
(D) calculate and compare simple interest and compound interest earnings;